THE QUADRATIC FORMULA

LEARNING GOALS

- Learn how to use the quadratic formula to find the roots of a quadratic equation.

DERIVING THE FORMULA

Example

Quadratic Formula

$$
\begin{aligned}
& 2 x^{2}+5 x+1=0 \\
& x^{2}+\frac{5}{2} x+\frac{1}{2}=0 \\
& a x^{2}+b x+c=0 \\
& \left(x^{2}+\frac{5}{2} x+\left(\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}\right)+\frac{1}{2} \\
& x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \\
& \left(x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)+\frac{c}{a} \\
& \left(x^{2}+\frac{5}{2} x+\left(\frac{5}{4}\right)^{2}\right)-\left(\frac{5}{4}\right)^{2}+\frac{1}{2} \\
& \left(x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}\right)-\left(\frac{b}{2 a}\right)^{2}+\frac{c}{a} \\
& -\frac{25}{16}+\frac{1}{2} \\
& \left(x+\frac{5}{4}\right)^{2}-\frac{25}{16}+\frac{8}{16} \\
& \left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{4 a c}{4 a^{2}} \\
& \left(x+\frac{5}{4}\right)^{2}-\frac{17}{16}=0 \\
& \left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}+4 a c}{4 a^{2}}=0 \\
& \sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{17}{16}} \\
& \sqrt{\left(x+\frac{b}{2 a}\right)^{2}}=\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
& x+\frac{5}{4}=\frac{ \pm \sqrt{17}}{4} \\
& x+\frac{b}{2 a}=\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=-\frac{5}{4} \pm \frac{\sqrt{17}}{4} \\
& x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-5 \pm \sqrt{17}}{4} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-5+\sqrt{17}}{4} \quad x=\frac{-5-\sqrt{17}}{4} \\
& x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Definition

- a formula for determining the roots of a quadratic equation in standard form.

Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

EXAMPLE 1: REAL ROOTS
Use the quadratic formula to solve each quadratic equation. Where necessary, round to the nearest hundredth.

$$
\begin{aligned}
& 2 x^{2}+9 x+6=0 \\
& a=2 \quad b=9 \quad c=6 \\
& 4 x^{2}-12 x=-9 \\
& 4 x^{2}-12 x+9=0 \\
& a=4 \quad b=-12 \quad c=+9 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-q \pm \sqrt{q^{2}-4(2)(6)}}{2(2)} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{12 \pm \sqrt{(-12)^{2}-4(4)(9)}}{2(4)} \\
& x=\frac{-9+\sqrt{9^{2}-4(2)(6)}}{2(2)}=-0.8 \\
& x=1.5 \\
& x=\frac{-9-\sqrt{9^{2}-4(2)(6)}}{2(2)}=-3,7
\end{aligned}
$$

2 Solutions

EXAMPLE 2: USE THE QUADRATIC FORMULA TO SKETCH A PARABOLA
Find the x-intercepts, the vertex, and the equation of the axis of symmetry of the quadratic relation $y=-5 x^{2}+8 x-3$. Sketch the Parabola.

$$
\begin{array}{rlrl}
y & =-5 x^{2}+8 x-3 & V(h, k) \\
a & =-5 b=8 \quad c=-3 & h & =\frac{r+5}{2} \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & =0.8 \\
& =\frac{-8 \pm \sqrt{8^{2}-4(-5)(-3)}}{2(-5)} & k & =-5 h^{2}+8 h-3 \\
x & =0.6,1 & & =0.2 \\
r & V(0.8,0.2)
\end{array}
$$

EXAMPLE 3: CONNECT A PARABOLA AND NO REAL ROOTS
A parabola has equation $y=(x-2)^{2}+3$.
a) State the coordinates of the vertex, the equation of the axis of symmetry, and the direction of opening.

$$
V(2,3) \text { opens up. }
$$

b) Determine the x-intercepts. Verify using the quadratic formula.

$$
\begin{aligned}
y & =(x-2)(x-2)+3 \\
& =x^{2}-2 x-2 x+4+3 \\
& =x^{2}-4 x+7
\end{aligned}
$$

$$
a=1 \quad b=-4 \quad c=7
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$\because \sqrt{-12}$ is not a real number

$$
=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(7)}}{2(1)}
$$

\therefore "there are no

$$
=\frac{4 \pm \sqrt{16-28}}{2}
$$ real roots.

c) Sketch the parabola

EXAMPLE 4: PATH OF A BASKETBALL
The path of a basketball after it is thrown from a height of 1.5 m above the ground if given by the equation $h=-0.25 d^{2}+2 d+1.5$ where h is the height, in metres, and d is the horizontal distance in metres.
a) How far has the ball travelled horizontally, to the nearest tenth of a metre, when it lands on the ground?

$$
h=0
$$

$$
\begin{array}{ll}
0=-0.25 d^{2}+2 d+1.5 & x=-0.69,8.7 \\
a=-0.25 \quad b=2 \quad c=1.5 &
\end{array}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

\therefore It lands at a

$$
=\frac{-2 \pm \sqrt{2^{2}-4(-0.25)(1.5)}}{2(-0,25)}
$$ horizontal distance of 8.7 m.

b) Find the horizontal distance when the basketball is at a height of 4.5 m above the ground.

$$
h=4.5
$$

$$
4.5=-0.25 d^{2}+2 d+1.5
$$

$$
0=-0.25 d^{2}+2 d+1.5-4.5
$$

$$
0=-0.25 d^{2}+2 d-3
$$

$$
\begin{aligned}
& a=-0.25 \quad b=2 \quad c=-3 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=2,6
\end{aligned}
$$

\therefore the basketball reaches this height at both 2 m and 6 m .

